
1.2 Information page 0

version: 3.0 20-Feb-05

Chapter 1.2 Measuring and Coding Information __________________________________ 1
Measuring information ___ 1

The bit: the unit of information___ 1
Figure Exponents___ 3

Are bits worth the trouble? __ 4
Information in a string of symbols __ 4
English as an example ___ 5

Redundancy and error correction___ 5
An example: check sums ___ 6

Codes and formats ___ 6
Roman and Arabic numbers: examples of formatted codes _______________________________________ 6

Information storage in computers___ 7
Addresses, bytes, and words___ 7
Codes for numbers __ 8

Figure FloatFormat __ 12
Computer codes for text ___ 13
Codes implemented using a lookup table __ 15

Figure LookUpTable ___ 16
Codes for images __ 17

Figure ImageFormat ___ 18

Biological information ___ 19
Purpose of life __ 19
The vocabulary of biochemistry ___ 20

Summary of the chapter__ 20

1.2 Information page 1

version: 3.0 20-Feb-05

Chapter 1.2 Measuring and Coding Information

Measuring information
Information seems such a vague and subjective concept that it may be difficult to

imagine how it could be measured. The method is part compromise and part
mathematics. The compromise is to define all information as a series of choices
between alternatives, and to consider the choices to be the information. To ignore the
content of the alternatives may seem too limiting, but we will see that this
simplification provides a tool allowing many insights into the performance of
communication and information systems.

Specifically, information is defined as a series of events, devices, signs, symbols or
tokens that allow a choice between previously specified alternatives. Thus,
information is defined in terms of function, what it enables us to do. The function of
information is to only make choices between defined alternatives. What the
alternatives are, what they mean, and how they are in turn defined has now been
separated from the information used to make the choices.

While this abstraction may at first seem forced or artificial, it is perhaps no more
abstract than the concept of quantity or number itself. When children are first
introduced to numbers the numbers are linked to a specific objects, e.g. one apple, two
apples, three apples. However, after a specific number has been used to refer to the
same quantity of many different kinds of objects, e.g. two apples, two dogs, two boats,
children begin to associate the number with the abstract concept of quantity, and not
the objects themselves.

The bit: the unit of information

If information is defined as the ability to make choices, the smallest amount of
information would be that which enables you to make the most simple choice: the
decision between two alternatives. The information needed to make such a choice is
called a bit, a token which has two possible states. You can call the two states + and -,
yes and no, 1 and 0, or A and T; whatever pleases you. Of course most decisions are
more complex than choosing between two alternatives, but as we will see a decision of
arbitrary complexity can be accomplished by the sequential use, or sum, of a series of
bits.

Suppose we need to choose among four alternatives, call them A, B, C and D. One
way to accomplish this is to first chose between the A-B pair and the C-D pair. This
takes one bit of information. Then we need to choose between A and B, or C and D,
depending on what the first decision was. This second decision takes one bit. Thus we
have picked one out of four choices with two bits. While there are several ways of
making the final choice, they all take two bits of information. Extending this method,
we can decide among 8 choices with 3 bits, 16 choices with 4 bits, 32 choices with 5

1.2 Information page 2

version: 3.0 20-Feb-05

bits, and so on. Each time the total number of choices is doubled, only one more bit is
needed to make the final choice.

A series of numbers in which each is a constant multiple of the preceding is an
exponentially increasing series. If the first number in the series is the multiplier, the
nth member is said to be that number raised to the power n. Specifically, the nth term
in the series of the preceding paragraph, 2, 4, 8, ... is 2n., two raised to the power n.
Two to the third power is eight. The process of raising a number to a power,
exponentiation, is related to multiplication in the same way that multiplication is
related to addition. Multiplication of n by m means that n is added to itself m times.
Raising n to the m power means that n is multiplied times itself m times. The inverse
of raising a number to a power is to find its logarithm. The logarithm of 8 to the base 2,
is 3. Thus, the number of bits needed to make n choices is the logarithm of n to the
base 2.

1.2 Information page 3

version: 3.0 20-Feb-05

Figure Exponents

1.2 Information page 4

version: 3.0 20-Feb-05

Figure Exponent. An exponent is a shorthand way of indicating repeated
multiplication of a number by itself, e.g. 24 means 2x2x2x2. A negative exponent
indicates the reciprocal , e.g. 2-4 is 1/ 24. The logarithm of a number is the number of
times the base number must be multiplied by itself to equal the number. In information
theory the base is 2. Other common bases for logarithms are 2.71828… (natural
logarithms) and 10 (common logarithms).

If we are using tokens that have more than two states or values, then each token is
worth more than one bit of information. For example, if the token is a numerical digit
which can have a value between 0 and 7, it carries 3 bits of information since there are
8 possible states. If the digit can have values between 0 and 9, it represents slightly
more information, 3.23 to be more exact. If we use the numerical digits 0 to 9 plus all
the letters of the English alphabet for a token there will 36 possible values. The
information that can be transmitted by one of these tokens is 5.17 bits. This is one of
the motivations for using letters and numbers in automobile license plates, you need a
smaller number of symbols to specify a large number.

Are bits worth the trouble?

The skeptic will point out that it not necessary to use bits in order to deduce that
fewer symbols are required to uniquely label one million license plates if both
numbers and letters are used as opposed to using numbers alone. The simple
argument is that it takes six digits (in the range 0 to 10) to count to one million (000000
to 999999), while it takes less than four symbols if each symbol has 36 possible values,
since 36 X 36 X 36 X 36 = 1,679,616.

The advantage of thinking in bits is that the information content of a string of
symbols is simply the sum of the information in each of the symbols. As comparisons
of strings of different symbols and various operations on the transmission and reading
of those symbols become more complex, the advantages of using the concept of bits
increases. Trust me.

Information in a string of symbols

If you are shown a string of symbols in an unfamiliar language or code, you will of
course not be able to determine the content. However, you also can’t easily calculate
how much information is in the message, even using our constrained definition of
information. Why can't you just determine the number of bits in each symbol and
multiply that by the number of symbols in the string to get the total information?

The first problem is that you may not know how many possible values the symbols
can have. Suppose it is short text in Latin, but you aren't familiar with Latin. It looks
like the English alphabet is being used, and you thus assume that each letter can be
one of 26 possible types, not knowing that Latin does not use the letter v. If the
message is in English, but you don't know the English alphabet, you might not come
across the letter z. and thus think there are only 25 possibilities. The longer the string
the more likely you can guess the total number of different symbols, but you can never
be sure if you don't know the language or code being used.

1.2 Information page 5

version: 3.0 20-Feb-05

There is a more important but subtle problem A very basic law in information
theory is that the occurrence of symbols in a string must appear to be random if the
code used carries the maximum amount of information per symbol. The definition of
random, and more specifically methods for proving that a string or anything else is
random, are deep and important philosophical and mathematical questions, but we all
have an intuitive idea of what random is. A string of symbols is random if we have no
way of predicting in advance the symbols in the string, which is a way of saying that
there are no patterns in the string that are independent of the message. The string
must appear to be random when we don’t know the message.

The reason we must not be able to predict the content of the string is actually
obvious when you think about it. Any predetermined pattern in the string restricts the
choices the sender can use to specify the message. If there are fewer patterns of
symbols that can be used by the sender, the string must be longer to contain the same
message. Thus, the formula given in the previous section for the number of bits a
string of symbols can carry is actually just the maximum possible, not necessarily the
amount in a real string.

English as an example

Since there are 26 letters used to write English text, each could represent 4.7 bits.
But, in real English text (as opposed to an artificial code written in English characters)
each letter is not independent of its neighbors. Each group of letters in English must be
a word, but many combinations of letters are not words. There are many rules of
grammar, e.g. sentences must contain a verb. Finally, there are strong frequency
preferences e.g. “e” is used far more frequently than “z”, what ever the message is.
These patterns lower the average information density of this or any other English
sentence to a value far lower that what the simple formula would predict. Thus,
English text can be coded by a string of English letters typically 2 to 3 times shorter
than the plain text, and this is sometimes done before English text is stored or
transmitted by a computer.

Redundancy and error correction
Error correction is an essential process for both the Internet and life. Most of the

machinery we will discuss later makes far too many errors for the systems they power
to function without error correction, and typically several layers of error handling are
used.

The most primitive error correction method is redundancy, and the most primitive
redundancy is repetition. If a message is repeated and the two copies do not agree a
request for a new copy can be made, and the two out of three that agree must be the
correct message. A more complicated example is English text, which as we have noted
earlier, does not send information in the most compact or efficient code. However, the
rather verbose nature of English is also an advantage, since a single mistake is usually
(but not always) detected, and often the correct text can be deduced so that the
message does not have to be sent again. Often error detection and error correction are
separate processes.

1.2 Information page 6

version: 3.0 20-Feb-05

An example: check sums

The design and implementation of error detection and correction is an entire sub-
field of communication design. The many different strategies for error detection each
have advantages and disadvantages. Thus the design goal is to match the error
handling methods to the specific characteristics and requirements of the system.
However, there is one simple scheme that is so common that I describe it here as an
example.

The goal is error detection and the method consists in computing a check sum
which is transmitted along with the message. The check sum is determined by giving
each character a numerical value. With English text the value could be the position of
the letter in the alphabet, i.e. a=1, b=2 ...At the end of the message, or paragraph, or
sentence, the sum of the values of the letters is determined. This is the check sum. The
recipient repeats the calculation of the check sum using the transmitted message, and
if this computed value equals the transmitted one the message is assumed to be
correct. If the message is incorrect, a request is made to send the message again. This
method is very efficient, since symbols needed to code the check sum is usually
insignificant in comparison to the message itself. Of course it only detects an error, the
message needs to be retransmitted if one is found. However, if the error rate is low,
retransmission needs to be done infrequently, and thus the strategy can be very
efficient.

Codes and formats
In order to use a string of symbols to make choices you need a method for

associating the characters with specific choices. The association or mapping of symbols
to alternatives is called a code. A related concept is a format: a set of rules that
specifies the position, organization or size of symbols. Often a format is part of a code
because it indicates how the symbols are to be interpreted. However, there are formats
which do not convey information. One example is alphabetical order. If we have a list
of words in random order, and then rearrange the words to produce a list in which
they are in alphabetical order, we have not added information to the list. That is
because the rules for arranging a list in alphabetical order are commonly known, and
can be done by anyone to any list with no special knowledge about what the list is
intended to code. This does not mean that it may not be useful to arrange a list in
alphabetical order, just that the rearrangement does not add information.

Roman and Arabic numbers: examples of formatted codes

Familiar examples of two codes in which a positional format is part of the code are
the Roman and Arabic method of representing numbers. A code for numbers, here
more specifically integers, is a code that enables you to chose between all possible
integers. The number twenty-four is encoded very differently in the two systems.

Twenty four in the Roman code is "XXIV". The symbols are most easily read left to
right. In this direction, as long as symbols code for equal or smaller values, the
numbers represented by the symbols are just added to give the final number. All

1.2 Information page 7

version: 3.0 20-Feb-05

numbers could be encoded in this manner, but in order to make the code more
compact you can place a symbol for a smaller number before a symbol for a larger one,
in which case the value of the smaller is subtracted from the number. The symbol “X”
means ten, “V” is five, and "I" is one. Thus the example Roman number is ten plus ten
plus five minus one, or twenty-four. To code for large numbers, e.g. the number of
years since the birth of Christ, you need additional symbols, e.g. "C" for one hundred. I
don't think Romans wrote really large numbers.

Twenty four in the Arabic code is "24". The symbols are most easy read right to left.
In this direction the first symbol, “4” means four. The second symbol, “2” is two, but
because it is in the second position, it must be multiplied by ten and then added to the
number. Thus this collection of symbols means twenty-four. The absolute position of
each symbol is essential for its interpretation, and thus there must be a means of
indicating position, whatever the value of the other symbols in the number. This
means that there must be a symbol for zero. If there were no zero, how would you
indicate twenty? One of the advantages of the Arabic system is that position is
efficiently used to transmit information. Thus, only the symbols 0-9 are required to
code even very large numbers. Another advantage of the Arabic system is that it is
easier to specify algorithms for addition, subtraction, multiplication and division.
However, to use the Arabic code you have to understand the process of multiplication,
at least implicitly, while the Roman code uses only addition and subtraction to
combine the symbols.

Information storage in computers
Information can be stored in several types of devices in a computer. Examples are a

register in the CPU (central processing unit), an address in a RAM (random access
memory) or a track on a magnetic disk. However, in all commonly used devices, the
fundamental units have only two states, and thus store one bit of information. The
usual symbols used to represent the two states are 0 and 1. The use of these two
symbols is just convention; you could just as well use "A" and "B" or "up" and "down"
to represent the two states of the device. Thus, there is no special relation between
computers and numbers. Computers have no “knowledge” of numbers, only of states.
What you call those states is up to you. There is also no fundamental reason why
memory devices can not have more than two states. If the device had more than two
states it would take less units to represent a given amount of information. If you can
invent a cost effective way to make memory that has more than two states, do it now,
and be sure to get a patent. You can then finish this book from the deck of your very
large yacht.

Addresses, bytes, and words

Information is stored and retrieved in two ways in electronic devices, sequential
and addressable. Data is stored in a sequential device as one long string of bits. The
data may be divided into groups, with perhaps a predefined number of bits in each
group, or there can be coded tags which indicate the start and end of the groups. In
any case, to find data the string of bits must be read from the beginning until the

1.2 Information page 8

version: 3.0 20-Feb-05

desired data is found; there is no other way of getting it. Writing and reading data on
magnetic tape is an example sequential process.

In contrast, data can be obtained from addressable memory by sending the address
for that data, no searching is required. If the typical unit of data handled by the
computer is small it is best for each addressable unit to be small, while if the typical
unit of data is large, it would be best to have large units at each address. The usual
compromise for the addressable unit size is 8 bits, a byte. Since one hexadecimal
symbol represents four bits, a byte can be represented by two hexadecimal symbol.

However, more than one byte of information is often required to accomplish even a
basic task. As an example, the address for one byte in a typical personal computer
memory is made up of four bytes1. Consistent with the need to work with large units
of data, each register in a CPU typically holds four bytes, and some handle eight. The
size of the CPU registers is often called a word. To speed information transfer from
memory to CPU and back one or more words is moved at each cycle, even if all the
information is not used.

Codes for numbers

Since the basic information processing devices in computers have only two states, it
is natural to represent information using a binary format, e.g. 00110111. This string
means that there is a group of 8 binary devices which have the indicated states. The
device on the left is defined as the most significant, which is another way of saying
that the symbols are to be read from left to right. There is no way to know from this
representation what this string means. It could be a number (as we will see there are
many number codes), or a string of letters, or part of an image, or a brief segment of
audio. Eight bits is a very common unit of information for computers; this unit is
called a byte.

It is tedious to write any significant amount of information in a binary
representation; it just takes up too much space. It is thus usually more convenient to
express information using symbols that represent more than one bit. Of course, the
decimal code that we use in everyday life has this property, since there are ten
symbols. Ten is a convenient base for a number system if you are using the fingers of
both hands as counting and memory devices. However, if you are representing a
number which is stored in computer memory you want the number of symbols to be a
multiple of two. In that way the information represented by one symbol can be stored
in an integer number of bits, or binary devices; 2, 4, 8, or 16 symbols require 1, 2, 3, or
4 devices. The most common code is hexadecimal, meaning it has sixteen different
symbols and thus represents 4 bits of information. The symbols used are 0-9 plus A-F.
Thus twelve would be "C" in hexadecimal format and twenty four would be 18.

1 This may seem strange; it would be like having the address on a letter be four times
as large as the contents of the letter itself. One reason the size of the addressable unit is
as small as a byte is historical. When the IBM PC appeared, which was several years
later than the start of personal computers, 0.1 MB of RAM cost several hundred
dollars. Today you can buy 1000 MB of RAM for about the same price.

1.2 Information page 9

version: 3.0 20-Feb-05

Remember, in hexadecimal, the "1" in the left position means sixteen (not ten), and
when added to the 8 in the next position the entire number equals twenty four.

Number
base 10 base 2 base 4 base 16
0 00000000 0000 00
1 00000001 0001 01
2 00000010 0002 02
3 00000011 0003 03
4 00000100 0010 04
5 00000101 0011 05
6 00000110 0012 06
7 00000111 0013 07
8 00001000 0020 08
9 00001001 0021 09
10 00001010 0022 0A
11 00001011 0023 0B
12 00001100 0030 0C
13 00001101 0031 0D
14 00001110 0032 0E
15 00001111 0033 0F
16 00010000 0100 10
17 00010001 0101 11

127 01111111 1333 7F

255 11111111 3333 FF

 2s compl
-1 11111111
-2 11111110
-3 11111101

Figure Counting. The left column lists consecutive numbers in base 10, the common
way we humans write numbers. In the next three columns are the same numbers are
represented in base 2, 4, and 16 formats. The base 16, or hexadecimal format uses

1.2 Information page 10

version: 3.0 20-Feb-05

the first six letters of the alphabet to represent values greater than nine. Base 2 and 16
formats are commonly used by computer engineers while the base 4 format is
included merely to illustrate that it could be used (and we will see later that living
organisms use base 4 hardware). When you count you increase the value of a symbol
until you run out of values, then you “carry” a one over to the next digit. In a base 2
system you only have 0 and 1 to count with, so you must “carry” for every other
number as you count. There are several ways negative numbers could be
represented, but the most common is the two’s complement method. In this format the
sum of a positive and negative number is obtained by simply adding the binary
representations of the two numbers.

Since a series of bits can be interpreted as number, it might seem that codes would
not be needed to represent numbers in computer memory. That is wrong. An example
of a code to represent negative numbers has been already been presented in Figure
Counting. The code is called “two’s complement”; it is the most common code for
negative numbers because the same algorithm used to add two positive numbers can
be used to add a positive and negative or two negative numbers, i.e. no special rule is
needed for subtraction.

To add two binary numbers you use the same algorithm learned in the First grade
(or Second or where ever) for decimal numbers. Start at the right end of each number
and add the digits. If the sum of the digits can be written as one symbol it is written in
that position of the result, and you proceed to the next position of each number.
However, if the sum of the digits produces a number with two symbols, the left
symbol of that number is written as the result for that position, and the 1 is “carried”
over to become part of the sum for the next position. In binary code the addition table
is very simple: 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 10.

Use this procedure to add the bytes 00000001 and 11111111. The add for position
one produces 0 and carry the 1. All the remaining adds give the same result and the 1
to be carried from the last add is lost because the byte is stored as eight bits; any
higher bit “overflows”, i.e. it is lost. Thus the result is 00000000. This is exactly the
result of adding 1 to –1. Thus, as seen in Figure Counting, the two’s complement
representation of –1 is 11111111. This certainly isn’t the only possible code for –1, it’s
just the most efficient for most computers.

As the second example of a code, suppose you want to store a number in memory
that requires than 8 bits, more than one byte. When you retrieve several consecutive
bytes from a memory device, in which order do you assemble the bytes?
Unfortunately, there are two systems. In the Big-Endian representation the byte with
the lowest memory address (the one received first) is the most significant, i.e. it goes at
the left end. In the Little-Endian representation the byte with the lowest address value
is the least significant byte, i.e. it goes at the right end. The Big-Endian format is
followed in IBM mainframes, computers running UNIX, and Apple Macintosh
computers. The Little-Endian format is followed in Intel-Microsoft PCs. The PowerPC
chips used in many IBM and Apple computers can be switched to either system. Thus,
even concatenating memory locations requires a code.

1.2 Information page 11

version: 3.0 20-Feb-05

Up to now we have been talking about integers. A more complex code is needed to
represent fractions (including decimal fractions), large, and small numbers. These
numbers are typically stored and manipulated in exponential (or floating point)
format, containing a mantissa and an exponent term (see Figure Exponent). Consistent
with other numerical codes used by computers, both the mantissa and the exponent
are in binary format, and the base for the exponent is two.

A common size for a floating point number is 4 bytes or 32 bits, sometimes called a
“single precision” representation. As this term suggests, it does not promise to
represent all original numbers exactly, but just to a defined precision, e.g. there is no
exact representation of the fraction 1/3 in this format. In the most commonly used
format, described in Figure FloatFormat, the first bit is used to indicate the sign, the
next 8 bits are the exponent, and the remaining 23 bits represent the fractional part of
number.

1.2 Information page 12

version: 3.0 20-Feb-05

Figure FloatFormat

1.2 Information page 13

version: 3.0 20-Feb-05

Figure FloatFormat. A positive or negative fractional number can be represented in
this format. The number is first written in binary point notation where the positions to
the left of the point represent increasing powers of 2 while the positions on the right
represent increasing powers of 1/2. This binary number is then “normalized” by moving
the point to the left until there is only one “1” to the left. The number of moves is the
exponent of the final number, and the binary array to the right of the point is the
fractional, or mantissa of the final number. The exponent is represented in “excess
127” notation, which is just a convenient way to represent negative numbers, similar to
the “twos complement” format.

There are many formats that are use in computer systems to represent different
kinds of numbers. Most of the formats are defined after many meetings of large
committees of computer programmers and scientists from both corporate and
academic environments. The Institute of Electrical and Electronics Engineers organizes
many of these standards committees, and thus the format names often start with IEEE.

The computer programmer that is writing code makes the decision of which type of
format to use when storing each data item. If the data is the amount deposited in a
bank by a customer the programmer will use one type. If the data is the speed of a
rocket the programmer will use another type. At least one serious failure of a rocket
was due to the assumption by a programmer that the velocity would never exceed a
certain value, and thus used a format that could only store numbers up to that value.
When the velocity exceed that limit, the bits in the memory location had no relation to
the velocity, and the rocket was lost. As we see below, there are many types of data
other that numerical values.

Computer codes for text

It is common to want to transmit alphanumeric characters on the Internet or
manipulate and store them using a computer. Since I am writing this paragraph using
a computer and a word processing program, I am doing exactly that now using the
ASCII (American Standard Code for Information Interchange; pronounced “ass key”)
code. There are old 6 bit and 7 bit versions of this code, but now 8 bits, or one byte, are
reserved for each character. Since one byte can code for 256 alternatives, there is more
than enough room for lower and upper case versions of the letters of the English
alphabet, the numerical digits, punctuation and formatting characters, and many
special symbols. In addition, about a dozen of the first characters (those that come
early in the code) are used as control instructions for hardware devices that handle the
data stream. The code for non-common characters is not as standardized, and thus can
only be used between compatible devices. As an example, Apple Macintosh
computers use much of the non-standard portion of the code for mathematical
symbols and the special characters used in French, Spanish, German and Greek
languages, with variations between fonts. A portion of the standard ASCII code is
given in Figure ASCII.

1.2 Information page 14

version: 3.0 20-Feb-05

BINARY HEX DECIMAL NAME SYMBOL
00101101 2D 45 hyphen -
00101110 2E 46 period .
00101111 2F 47 slash /
00110000 30 48 zero 0
00110001 31 49 one 1
00110010 32 50 two 2
00110011 33 51 three 3
00110100 34 52 four 4
00110101 35 53 five 5
00110110 36 54 six 6
00110111 37 55 seven 7
00111000 38 56 eight 8
00111001 39 57 nine 9
00111010 3A 58 colon :
00111011 3B 59 semicolon ;
00111100 3C 60 less than <
00111101 3D 61 equal =
00111110 3E 62 greater than >
00111111 3F 63 question ?
01000000 40 64 at @
01000001 41 65 capital A A
01000010 42 66 capital B B

Figure ASCII. The “American Standard Code for Information Interchange” or ASCII,
is perhaps the most common, but certainly not the only code used for English
characters. It also contains “control” characters which can be used to control simple
printers and monitors.

There are other digital codes for alphanumeric symbols. In a time long ago, before
personal computers were invented, when computers were room-filling machines
made by IBM, alphanumeric data was often encoded by the Extended Binary-Coded
Decimal Interchange Code (EBCDIC; pronounced “ebb see dick”). This is the code
you would need to understand a stack of punched cards that you found in your
father’s attic.

Since the entire world is becoming dependent on computers for every mode of
communication, any modern symbol code must support languages that use large

1.2 Information page 15

version: 3.0 20-Feb-05

numbers of non-Roman characters, e.g. Chinese. The Unicode character code was
proposed by a number of companies in 1991 to accomplish this end, and is now the
“established” modern character code. This code uses 16 bits (2 bytes) for each
character, so that 65,536 characters can be represented. The lower byte of Unicode still
represents the ASCII character code, so it is relatively easy to integrate Unicode in
older applications. The goal for the developers of Unicode is to assign unique codes to
characters and ideographs of the most common languages of this world, so that one
coding can be used for all. Over 20,000 ideograph characters have been assigned by
standards bodies in China, Japan, Korea, and Taiwan.

Codes implemented using a lookup table

There are often cases when decoding a string of bits can not be defined as a simple
arithmetic process or logical rule. A powerful and general method is to translate the
string into a number and use that number as an address to retrieve the decoded
information from a table stored in computer memory.

As an example, a lookup table could contain digital images of text in sequential
locations in computer memory. To obtain the image of one character, take the code for
the character (interpreting it as a positive integer), multiply by the size (number of
bytes) needed to store one image, and add the number which is the starting address in
memory for the lookup table. Then read the series of bits stored in memory at that
location, and you have the image. Of course, you have to have a rule for translating
the stored bit stream into an image. The usual method is to sequentially scan a
rectangle of n x m pixels (locations) on the screen and make pixels bright if the bit is 1,
dark otherwise.

If it is only necessary to display text with one size and font, the table lookup can be
implemented with a special chip, a character generator. This solution is fast and cheap
and frees up the main CPU to do other tasks. Computer monitors and personal
computers up to 1984, used character generators. The Apple Macintosh, introduced
that year, had a Graphical Users Interface (GUI) and was always in "graphics mode",
i.e. all characters were "drawn" on the screen using a software look-up table stored in
main memory. Thus, look-up tables could be easily generated to represent many fonts
and styles of text. If you were using a word processing program, you could now see
the text close to the way it would appear after being printed. Of course for this to be
really useful it was necessary to develop the laser printer, which also "drew" the
characters on the paper. Apple later introduced laser printers which were compatible
with its computers, creating the “desk top publishing” industry.

1.2 Information page 16

version: 3.0 20-Feb-05

Figure LookUpTable

1.2 Information page 17

version: 3.0 20-Feb-05

Figure LookUpTable. In this example the look-up-table contains the graphical
representation of a series of characters. A “0” means black while a “1” means white.
The data representing individual characters can be easily accessed and used to
generate a picture of the character on a screen.

A look-up table can be useful for storing many kinds of data, not just images. You
might be building a digital scale which generates the weight in grams, but you want to
sell it in the USA, which also uses ounces. One method to convert the number of
grams to ounces would be to use a chip that could multiply the number of grams by a
constant. However, another would be to use the number of grams as an address to a
memory chip containing the weight in ounces (and tenths) in each memory location.

Codes for images

The previous scheme for painting images of the ASCII characters on a screen is a
code for producing specific images. However, simple codes for representing general
images are constructed in a similar manor. The image is superimposed on a grid. The
grid is then scanned left to right, usually starting from the top left hand corner. A
white pixel is represented by a 1, and black by 0. The resulting bit stream codes for the
image. A real code needs a few more features, e.g. the width and height of the image
in pixels should be encoded in the beginning of the image so the display device can
present the data.

1.2 Information page 18

version: 3.0 20-Feb-05

Figure ImageFormat

1.2 Information page 19

version: 3.0 20-Feb-05

Figure ImageFormat. This format can be considered a version of a look-up table,
except it is intended to be read sequentially once to produce an image.

The image of the cracked egg in Figure ImageFormat has long sequences of white,
and it is inefficient to represent these sequences with a "1" for each pixel. A typical
compression code consists of pairs of numbers, with the first number specifying the
color (here black or white) and the second giving the number of sequential pixels
having this color. Fax transmissions and the GIF (Graphics Interchange Format) used
by Web browsers use a sophisticated version of this code. Images which are not
primarily composed of regions with a constant color, e.g. photographs, are not
efficiently coded with this scheme. Other codes, e.g. JPEG (Joint Photographic Experts
Group), are used for these types of images. A readable summary of graphics formats is
"Encyclopedia of Graphics File Formats", by Murray and vanRyper, O'Reillly &
Associates, 1996, which at more than 1000 pages, suggests the complexity of image
formats.

Biological information
In living systems, information is encoded in molecules, not patterns of electrical

charge or magnetic domains. Extremely long molecules, deoxyribonucleic acids
(DNA), carry the genetic information as a chain of four kinds of nucleotides. Each
nucleotide is a symbol, or token, which carries two bits of information. The
information in DNA is translated into proteins, linear polymers of twenty different
amino acids. The proteins fold up into specific shapes to form the structural units of
cells and to form catalytic machines (enzymes) that promote chemical reactions. The
chemical reactions break down food to generate energy, create molecular building
units, and form more organism.

Purpose of life

On the Internet there are two distinct classes of information, information that is
being transmitted, and information that is used to accomplish the transmission: the
cargo and the machine carrying the cargo. It is possible to make a sharp differentiation
between these two kinds of information precisely because there is a defined goal: to
deliver a defined message.

The purpose of living organisms is to produce progeny (the organisms must
survive long enough to produce progeny, but survival itself is not sufficient). This is a
tautology, for the progeny of organisms are the only organisms we see on earth. To
produce progeny organisms must store and process information. However, most of
the information needed to produce (specify) the progeny also is used to maintain the
parental organism. Thus, the machine and the cargo are hopelessly intertwined.

Perhaps a more important distinction between information used to run the internet
and information carried by living organisms is the fact that there is no manual that
tells us what information an organism contains or what that information does.
Understanding the Internet may be a prodigious effort, but at least there are manuals.

1.2 Information page 20

version: 3.0 20-Feb-05

The study of life is an experimental, inductive process, and you never know when you
are finished.

The vocabulary of biochemistry

It is difficult to discuss the details of information transfer and use in a biological
system without some familiarity with biochemistry. However, under the details of the
chemistry, information theory provides a framework for understanding the function
and limitations of the system.

Summary of the chapter
Information is defined and measured as the ability to make choices. The smallest

unit of information, the bit, allows a choice between two alternatives.

Humans use many formats to represent numbers as text in written documents. The
Romans used addition to represent large numbers while the Arabs used the more
powerful process of multiplication. Exponents, an extension of multiplication, are used
in the scientific format for numbers to represent large and small values.

Codes and formats are required to convert a sequence of bits into usable data.
Numbers, text, images or audio all require codes in order to be represented by the bits
stored in computer memory.

Information is stored and transmitted by living organism as a series of nucleotides
linked to form large molecules of DNA. The information is translated in the cell into
proteins with specific shapes and functions.

